Last time we looked at the
goto
statement. Today we will look at the two common uses for
goto
: flow control in nested loops and organizing error handing code.
Flow control: As we saw in previous weeks, the
break
and
continue
statements are used to modify the flow of execution in a loop. Both
break
and
continue
affect only the innermost enclosing loop. Sometimes you need to break out of nested loops. You could implement this with boolean flag values, but that approach can make your loop logic more convoluted and error prone. Instead, a
goto
statement can be used like
break
to jump out of nested loops:
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
if (...) {
goto doneWithLoops;
}
}
}
doneWithLoops:
// do more stuff
Similarly, you can use
goto
to emulate
continue
within nested loops, though keep in mind that
goto
doesn't automatically advance to the next item in a
for
or
for...in
loop the way
continue
does:
for (int i = 0; i < 10; i++) {
start_j:
for (int j = 0; j < 10; j++) {
if (...) {
i++; // manually advance loop counter to emulate continue
goto start_j;
}
}
}
Along with its use in loops, the
break
statement is also used in the
switch
statement to mark the end of a
case
block. It's not uncommon to use a
switch
statement inside a loop when implementing simple state machines, event dispatchers and parsers:
// simple event dispatcher
MyEvent *event = nil;
while (event = getNextEvent()) {
switch (event.type) {
case KEY_EVENT:
// handle key event
break;
case MOUSE_EVENT:
// handle mouse event
break;
}
}
shutdown();
Sometimes you want to exit the event loop from within one of the
case
blocks, like this:
// simple event dispatcher
MyEvent *event = nil;
while (event = getNextEvent()) {
switch (event.type) {
case KEY_EVENT:
// handle key event
if (event.keycode == KEY_ESC) {
// want to break out of the while loop
// but a break here applies to the case block
} else {
// ...
}
break;
case MOUSE_EVENT:
// handle mouse event
break;
}
}
shutdown();
You can always use a boolean flag variable and make your loop test more complex, but using
goto
here can make your code simpler and easier to follow:
// simple event dispatcher
MyEvent *event = nil;
while (event = getNextEvent()) {
switch (event.type) {
case KEY_EVENT:
// handle key event
if (event.keycode == KEY_ESC) {
goto event_loop_end;
} else {
// ...
}
break;
case MOUSE_EVENT:
// handle mouse event
break;
}
}
event_loop_end:
shutdown();
Error handling:
Standard C doesn't have a concept of throwing and catching exceptions; it's normal for functions in C libraries to return a result code to indicate an error (or to have an out parameter that holds a result code or error object). Writing robust programs using a C API requires checking result codes at each step and taking the appropriate action. For example, a function to copy a block of data from one file to another might look like this:
void copy_block(char const *in_filename, char const *out_filename, size_t block_size) {
FILE *in_file = fopen(in_filename, "r");
if (in_file) {
FILE *out_file = fopen(out_filename, "w");
if (out_file) {
char *buffer = malloc(block_size);
if (buffer) {
int bytes_read = fread(buffer, 1, block_size, in_file);
if (bytes_read > 0) {
int bytes_written = fwrite(buffer, 1, bytes_read, out_file);
if (bytes_written == bytes_read) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Copy block completed successfully." object:nil];
} else {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to write to output file." object:nil];
}
} else {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to read from input file." object:nil];
}
free(buffer);
} else {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to allocate buffer." object:nil];
}
fclose(out_file);
} else {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open output file." object:nil];
}
fclose(in_file);
} else {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open input file." object:nil];
}
}
This leads to deeply nested "flock of geese" code that can be error prone and hard to read. One technique to deal with this is to return from the function when an error is encountered. The same code implemented that way looks like this:
void copy_block(char const *in_filename, char const *out_filename, size_t block_size) {
FILE *in_file = fopen(in_filename, "r");
if ( ! in_file) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open input file." object:nil];
return;
}
FILE *out_file = fopen(out_filename, "w");
if ( ! out_file) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open output file." object:nil];
fclose(in_file); // clean up
return;
}
char *buffer = malloc(block_size);
if ( ! buffer) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to allocate buffer." object:nil];
fclose(out_file); // clean up
fclose(in_file);
return;
}
int bytes_read = fread(buffer, 1, block_size, in_file);
if (bytes_read <= 0) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to read from input file." object:nil];
free(buffer); // clean up
fclose(out_file);
fclose(in_file);
return;
}
int bytes_written = fwrite(buffer, 1, bytes_read, out_file);
if (bytes_written != bytes_read) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to write to output file." object:nil];
free(buffer); // clean up
fclose(out_file);
fclose(in_file);
return;
}
[[NSNotificationCenter defaultCenter] postNotificationName:@"Copy block completed successfully." object:nil];
// clean up
free(buffer);
fclose(out_file);
fclose(in_file);
}
One criticism of this approach is that clean up code is duplicated repeatedly and in different variations, a violation of the
DRY principle. Some programmers also prefer to have a single return point in a function. Using
goto
, you can centralize clean up code in one place in the function (and as a side effect, the function now has a single return point):
void copy_block(char const *in_filename, char const *out_filename, size_t block_size) {
FILE *in_file = fopen(in_filename, "r");
if ( ! in_file) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open input file." object:nil];
goto end;
}
FILE *out_file = fopen(out_filename, "w");
if ( ! out_file) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open output file." object:nil];
goto clean_up_in_file;
}
char *buffer = malloc(block_size);
if ( ! buffer) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to allocate buffer." object:nil];
goto clean_up_files;
}
int bytes_read = fread(buffer, 1, block_size, in_file);
if (bytes_read <= 0) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to read from input file." object:nil];
goto clean_up_all;
}
int bytes_written = fwrite(buffer, 1, bytes_read, out_file);
if (bytes_written != bytes_read) {
[[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to write to output file." object:nil];
goto clean_up_all;
}
[[NSNotificationCenter defaultCenter] postNotificationName:@"Copy block completed successfully." object:nil];
// clean up
clean_up_all:
free(buffer);
clean_up_files:
fclose(out_file);
clean_up_in_file:
fclose(in_file);
end:
return;
}
Please note that this is not a recommendation to always structure your error handling in this fashion using
goto
. This is simply one technique among many that you may encounter "in the wild" and which you may choose to use in the appropriate situation. When
goto
is used carefully and sparingly, it can help make difficult code cleaner and easier to follow, but unrestrained use of
goto
has the opposite effect. Whenever you're tempted to use
goto
in your own code, you should stop and see if you can break the code down into smaller functions or methods. Very often, refactoring a long function or method by extracting chunks of code into smaller functions or methods will do far more for you than a
goto
can.
Next time, a
summary of looping and a new topic:
variables.